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Abstract

Horizontal behavior of highly migratory marine species is difficult to decipher because ani-

mals are wide-ranging, spend minimal time at the ocean surface, and utilize remote habitats.

Satellite telemetry enables researchers to track individual movements, but population level

inferences are rare due to data limitations that result from difficulty of capture and sporadic

tag reporting. We introduce a Bayesian modeling framework to address population level

questions with satellite telemetry data when data are sparse. We also outline an approach for

identifying informative variables for use within the model. We tested our modeling approach

using a large telemetry dataset for Shortfin Makos (Isurus oxyrinchus), which allowed us to

assess the effects of various degrees of data paucity. First, a permuted Random Forest anal-

ysis is implemented to determine which variables are most informative. Next, a generalized

additive mixed model is used to help define the relationship of each remaining variable with

the response variable. Using jags and rjags for the analysis of Bayesian hierarchical models

using Markov Chain Monte Carlo simulation, we then developed a movement model to gen-

erate parameter estimates for each of the variables of interest. By randomly reducing the tag-

ging dataset by 25, 50, 75, and 90 percent and recalculating the parameter estimates, we

demonstrate that the proposed Bayesian approach can be applied in data-limited situations.

We also demonstrate how two commonly used linear mixed models with maximum likelihood

estimation (MLE) can be similarly applied. Additionally, we simulate data from known param-

eter values to test each model’s ability to recapture those values. Despite performing simi-

larly, we advocate using the Bayesian over the MLE approach due to the ability for later

studies to easily utilize results of past study to inform working models, and the ability to use

prior knowledge via informed priors in systems where such information is available.

Introduction

Where and why animals move remain relatively poorly understood population processes.

Underlying these simple questions are complex interactions among life history, physiology,
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behavior, forage distributions, and habitat, which make understanding movement a difficult

endeavor. A myriad of techniques have been developed to study the movement of animals

across terrestrial, marine, and aerial environments. Some are direct methods such as visual

observations, or tagging [1–6]; while others are indirect such as genetics or stable isotopes [7–

11].

Our focus in this study is on direct methods, specifically those using electronic tagging tech-

nology. Over the last several decades the scientific literature has seen a steady expansion in the

number of studies utilizing various forms of electronic tags to record data on animal move-

ment and associated environmental parameters [12, 13]. For various reasons (concealment,

remoteness, etc.) observations of marine animal movement have proven particularly challeng-

ing, most notably for large pelagic fish species like sharks, tuna, and billfish, which can cover

vast distances and do not require regular trips to the surface to breathe [e.g. 14, 15–17]. For

these animals such challenges have resulted in various levels of data paucity. Many of the cur-

rently available meta-analytical statistical methods require data to meet certain basic criteria,

such as having one data point per day of a track (or the ability to interpolate to that level), or

information on movement speed and or turning angle to accurately define a behavioral state

[e.g. 18, 19, 20]. In data-limited situations, these prerequisites restrict available analytical

approaches. While not true of all studies, these data restrictions lead many researchers to

approach their data at the individual level in a qualitative, largely descriptive manner, rather

than quantitatively and at a population level as indicated by Jonsen et al. [21], Heupel et al.

[22], and Papastamatiou and Lowe [23].

Restricting these data limited tagging studies to qualitative analysis at the individual level

can lead to gaps in our knowledge of population level movements, often resulting in estab-

lished paradigms being repeatedly stated by successive studies. Common Thresher sharks (Alo-
pias vulpinus) and Lemon sharks (Negaprion brevirostris) are examples of species that have

seen extensive amounts of tagging work with most to all of the analysis focused at the individ-

ual level [24–27]. In the case of Threshers this has led to hypotheses about population level sea-

sonal migrations established in the late 1980s and early 1990s based on CPUE of the California

drift gill net fishery to persist in the literature and be used as the basis for seasonal movement

in stock assessment work [28]. Despite advances in statistical techniques, without a clear

approach for data limited situations, the owners of such data will likely continue to couch their

analyses in more qualitative methods and stick to established paradigms, meaning these kinds

of situations are likely to persist.

Here we seek to spur the use of quantitative methods to investigate population level ques-

tions with telemetry data, even when data are sparse. Questions such as the likelihood of move-

ment in and out of marine protected areas, or across state and international boundaries,

ontogenetic shifts in habitat use, and the impacts of various environmental conditions on such

movements. We outline three approaches to analyzing telemetry data and provide a guide for

using them, as well as to test their robustness to various levels of data paucity. In keeping with

our focus on data limited situations our approaches do not require regular data intervals or

measurements of speed, and turning angles. They do however, require that variables of interest

and the modeling question itself be scaled properly relative to the uncertainty in available data,

and that questions be designed with a binary response variable (more on this below).

The approaches presented here in and of themselves are not novel; neither is putting them

in sequence to provide a robust framework for testing model assumptions. Instead, these steps

are laid out and tested for their performance under various levels of data paucity, to provide a

framework that can be applied in data limited situations. To test the effects of data paucity on

population level inferences, we had to find a robust dataset and randomly pare it down to

assess if the smaller datasets provided the same inferences as the full set. We also use simulated
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data, which are described in greater detail below, to assess each approach’s robustness to data

availability. Parameter estimates from increasingly sparse datasets are directly compared,

allowing us to discuss the effects of limited data on inferences. We endeavor with this work to

make these statistical tools available to a broad and perhaps less quantitative audience, as well

as to spur the use of quantitative methods in data limited situations.

Methods

General overview

Three modeling approaches are presented here: a Bayesian approach using Just Another Gibbs

Sampler (JAGS) (R package: rjags [29]), and two generalized linear mixed models (GLMM),

penalized quasi-likelihood (PQL) (R package: MASS [30]), and “glmer” using the Laplace

approximation (R package: lme4 [31]). Given our emphasis on data limited situations our

approaches focus on binary questions e.g., whether an animal migrates across the equator or

from one known habitat to another, or when an animal switches from one behavior to another,

such as from foraging to transiting (e.g., [32]). Given telemetry data, and a binary response

variable, these approaches attempt to estimate parameter values that relate variables of interest

such as environmental conditions (various environmental indices, sea surface temperature,

etc.) or demographic values (sex, size, etc.) to that response variable. All analyses presented

here are conducted in R (version 3.2.3; [33]).

As discussed by Bolker et al. [34], describing the use of GLMMs or Bayesian models to ana-

lyze data necessarily touches on controversial statistical issues such as the debate over null

hypothesis testing, or the use of informative or vague priors. These topics have been thor-

oughly covered by others [35–37] and further discussion is outside the scope of this paper.

These discussions aside, however, comparing the results of GLMMs and Bayesian models in

various states of data paucity seems prudent when providing a practical framework in the

hopes of spurring a more quantitative approach to sparse telemetry data.

Throughout this paper we deal with two datasets. The first is a real satellite-linked radio-

telemetry-tag (SLRT) dataset of Shortfin Mako (Isurus oxyrinchus; hereafter Mako) in the

northeast Pacific provided by the Southwest Fisheries Science Center. This dataset was selected

because of the abundance of data (9440 locations across 34 tracked individuals), which allowed

us to randomly pare it down to create “data poor” subsets to test the effects of data paucity on

population level inferences. The second dataset, a simulated Mako dataset generated to mirror

the real Mako dataset in size and level of individual variation, but with known, true parameter

values. Both datasets were subjected to various levels of subsetting to assess the effects on infer-

ences. The simulated dataset alone would be adequate for testing the effects of limited data on

model inferences however; our desire to provide a framework for a broad audience will be

assisted by showing our model outcomes when using both a real world and a simulated

examples.

With the focus here being on methods, a meaningful discussion of Mako ecology is beyond

the scope of this work. As such, our binary question concerns whether Mako were found east

or west of an arbitrary line (longitude 125˚W) (Fig 1). This question was not selected for its

ecological relevance, but more to provide an interpretable example of a binary question about

horizontal movement. With this question, we outline a practical framework for the use of

quantitative tools by stepping through each stage of analysis while providing sample data and

R code. We first describe the preparation of data (i.e. refining locations and standardizing vari-

ables to comparable scales). We then develop a linear model through the process of variable

selection using Random Forest, and test to confirm variable linearity using a Generalized
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Additive Mixed Model (GAMM). Finally, we develop both Bayesian and GLMM frameworks

to analyze the data.

Data acquisition

Data from 34 SLRT tags were used for model development. All tags were placed on Makos

(between 152 and 259 cm TL; total length) in the Southern California Bight as part of the

annual juvenile shark survey conducted by the NOAA Southwest Fisheries Science Center

(SWFSC) [38]. Tags were deployed between 2004–2015 primarily during the summer (June-

August). All individuals had tracking data that covered at least 1 year with an average of 278

locations per individual (±86, SD). Locations were filtered to provide no more than one loca-

tion estimate per day; on days where multiple records were available only the highest quality

location was kept, with location qualities ranked 3, 2, 1, 0, A, B, Z. The Mako telemetry data

used here had a range of location qualities but the majority were of Argos location class 1, 2, or

3 (Fig 2), with associated errors between 326–1265 meters latitude, and 742–3498 meters lon-

gitude [39]. Location classes A and B have no accuracy estimates according to the manufac-

turer (Wildlife Computers, Redmond, WA). Data were not interpolated; days with no location

Fig 1. Map of Mako locations. Aggregated SLRT locations for 34 individual Makos (9440 total locations). Points in red are east of 125˚W longitude

boundary. Points in blue are in west of the boundary.

https://doi.org/10.1371/journal.pone.0188660.g001
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estimates were not included in the dataset. Some large gaps of weeks or months between points

existed but on average the gap between two data points was 2.08 days (± 4.15, SD).

Variable selection

The first step in designing a model requires selecting potential variables that could influence

movements. In the case of Makos, size, sex, season (a set of 4 variables, one for each season,

with 1 indicating when the record is in the given season and all others zero), environmental

index (in this case the Multivariate ENSO Index (MEI), North Pacific Gyre Oscillation

(NPGO), and the Pacific Decadal Oscillation (PDO)), moon phase (a continuous variable

from 0–1, new-full), sea surface temperature, and chlorophyll-a concentrations (a measure of

productivity) were selected as potentially important predictors affecting movement. Variables

then need to be examined to ensure the scales, both spatial and temporal, match the scales of

the telemetry data. For instance, latitudinal and longitudinal position estimate errors varied

due to a number of factors (animal behavior, time of year, etc.) so temperature and chloro-

phyll-a concentrations were gathered from ERDDAP (Environmental Research Division’s

Data Access Program) with “xtracto” (R package: xtractomatic) using longitude and latitude

Fig 2. Tag location quality histogram. Histogram of SLRT location quality (best to worst from left to right with the exception of D, which is the deployment

location).

https://doi.org/10.1371/journal.pone.0188660.g002
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errors based on the location class position estimate error [39], thus matching the scales of the

position estimate errors with those of SST and chlorophyll-a. The spatial and temporal cover-

age of the telemetry data dictated which ERDDAP datasets could be used. Unfortunately, chlo-

rophyll-a data which matched the span of the Mako tagging data only existed on a monthly

average scale. Relating the movement of Makos to a monthly average of chlorophyll-a was con-

sidered to be of little value and was removed. SST, on the other hand, was available daily for

the entire dataset from the Multi-scale Ultra-high Resolution (MUR) SST dataset. In this way,

location qualities and their associated errors were used to correctly bound the scale of match-

ing SST data, while also identifying the mismatch between our movement data and available

chlorophyll-a data.

Once the variables are checked for data quality, we recommend that each variable be nor-

malized so that the parameter estimates are not too small or too large in magnitude that they

are subject to issues of imprecision [40]. For example, the values of length are much larger

than those for SST or MEI, consequently, we normalized length using a z-score standardiza-

tion:

Yi ¼
Xi � x
sX

ð1Þ

Where Yi is the standardized value, Xi is the measured value, x is the sample mean for that vari-

able, and sX is the sample standard deviation for that variable.

After variable normalization, a linear model can be built of the form:

m ¼ b0 þ b1D1 þ b2D2 þ . . .þ bnDn ð2Þ

where a logistic transformation of μ is the probability of the response variable being ’1’, β0 is

the intercept term, β1 through βn are the parameter estimates for each variable, and D1 through

Dn represent the data for each variable, respectively.

In order to quantitatively determine which of the selected variables impact the response

variable “z” (which is binomially drawn from a Bernoulli distribution where 0 indicates that

the animal is east, or 1 that the animal is west of 125˚W), we ran a classification Random Forest

analysis (R package: randomForest [41, 42]). Random Forest is an extension of classification

and regression tree (CART) analysis, in which subsets of both the variables and the data are

randomly pulled to build bifurcating classification trees, which are then internally validated by

testing the performance on the remaining out-of-bag data. The importance of each variable is

determined by the success of the trees including that variable. We used a total of 10,000 trees

for the forest (ntree = 10000) and assessed each with an OOB sample of 1/3 of the total dataset

[e.g. 43, 44]. As discussed in Strobl et al. [45] subsampling with replacement was set to false

(replace = FALSE) as a precaution in order to avoid potential problems associated with vari-

able selection when predictor variable scales are dissimilar. Since the number of data points

west of the arbitrary boundary (2759) were fewer than those east (6681), the “sampsize” com-

mand was used to balance the building of the trees (sampsize was set to 1000 for each class).

The significance of each predictor on the response variable was tested using “rfPermute” (R

package: rfPermute (Archer 2013)) with “nrep”, the number of permutation replicates to run

to construct the null distribution and calculate p-values, set to 100, and the significance level

“a” set to 0.1. The calculated p-values given by rfPermute were used in preference to the basic

Gini index scores produced by the “randomForrest” package to identify important predictors.

If any of the predictor variables are perfect predictors, they must be removed prior to running

Random Forest in order to not overfit the model. In this case, an example of a perfect predictor
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would be longitude, since any value above or below 125˚W would perfectly predict whether an

animal was east or west of 125˚W.
# Run permuted Random Forest on Mako data
rp <- rfPermute(formula = z ~., data = Original, sampsize = c
(1000,1000),
replace = FALSE, ntree = 10000, nrep = 100, a = 0.1)

For this and all subsequent example code our Mako data was stored in a data frame named

“Original” with the following structure:
head(Original)
## ptt sex Spring Summer Fall Winter L z NPGO_Index PDO_Index
## 1 41676 M 0 1 0 0–0.3740933 0 0.78 0.04
## 2 41676 M 0 1 0 0–0.3740933 0 0.78 0.04
## 3 41676 M 0 1 0 0–0.3740933 0 0.78 0.04
## 4 41676 M 0 1 0 0–0.3740933 0 0.41 0.44
## 5 41676 M 0 1 0 0–0.3740933 0 0.41 0.44
## 6 41676 M 0 1 0 0–0.3740933 0 0.41 0.44
## MEI_Index Moon sst chl
## 1 0.283 0.0586144 17.45300 0.4292030
## 2 0.283 0.3222741 19.61117 0.6521956
## 3 0.283 0.7947392 19.07908 0.4757891
## 4 0.527 0.9359048 18.95387 0.3204745
## 5 0.527 0.8210133 18.47167 0.8794785
## 6 0.527 0.5869345 20.05420 0.6362990

where ptt (a unique tag number for each animal), sex, each season, and the response vari-

able z are all saved as factors.

Following the refinement of potential predictor variables by Random Forest, the assump-

tion of linearity was tested by running a Generalized Additive Mixed Model (GAMM) (pack-

age: gamm4 [46]). GAMM is designed to test and identify if the assumed linear relationship

between response and predictor variables is appropriate, or if ‘smooths’ are needed to correctly

describe a predictor variable’s relationship with the response variable [47]. By running an anal-

ysis of variance (ANOVA) on the GAMM results it is possible to identify the degrees of free-

dom for each predictor variable. A variable with a single degree of freedom can be treated as

linear while variables with more than one degree of freedom indicate that higher order terms

need to be included in the model. Setting “random” = ~(1|ptt) indicated that ptt was the ran-

dom effect for the model, while specifying “family” = binomial(link = "logit") identified that

the response variable is drawn from a Bernoulli distribution. Fall is set as the intercept in this

model and so is not explicitly listed as one of the predictor variables.
# GAMM run on the response variable z, random effect set to individual
(ptt), # and the family set to binominal with a logit link function
gamm1.0 <- gamm4(z ~ Spring + Summer + Winter + L + sex + MEI_Index,

random = ~(1|ptt),
data = Original,
family = binomial(link = "logit"))

# ANOVA run on GAMM results to investigate degrees of freedom per
parameter anova(gamm1.0$gam)

After establishing our predictor variables of interest with Random Forest, and testing them

for linearity using GAMM, our model looked as such:

m ¼ b0 þ b1 � Spring þ b2 � Summer þ b3 �Winter þ b4 � Lþ b5 � Sexþ b6 �MEI ð3Þ
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Model development

The next step is the construction of the Bayesian movement model. We used Markov chain

Monte Carlo (MCMC) methods to generate posterior probability distributions for model

parameters. While it is possible to include prior information into Bayesian models, our

approach here incorporates vague priors because often in data limited situations no prior

information exists. Also, the use of vague priors in our Bayesian analysis allows for a more

direct comparison to maximum likelihood model results. To deal with the nested nature of the

data, i.e. multiple data points for each individual, we used a hierarchical model structured by

individual tag number, which is analogous to a random effect in a generalized linear mixed

model [48]. This hierarchical structure need not be based on individuals, some other possible

hierarchies may be pod of whales, pack of wolves, or perhaps sample site for reef fish. The hier-

archical structure of these models is versatile and can be easily adapted to fit most situations.

Due to the construction of our model by individual, it’s essential that data be ordered by tag

number, or similar individual identifier, in order for the hierarchical structure to be imple-

mented correctly. First, we determine the number of data points for each individual tag

(tracks) and then create a vector which specifies the first record for each tag (tracks_2), finally

we use “cumsum” to identify the starting row, and ending row plus one, for each tag (cumul_-

tracks). This vector can then be used in the model by identifying the first location cumul_-

tracks[i] and last location cumul_tracks[i+1]-1 for each individual.
# Track lengths

tracks <- table(Original$ptt)
tracks_2 <- c(1,tracks)
cumul_tracks <- cumsum(tracks_2)

# Number of unique tags in the dataset
N <- length(unique(Original$ptt))

Next the model is specified as a text file within R, in our case saved with the name

“model_string1.0”:
# Model specification in JAGS syntax
model_string1.0 <- "model{

B0 ~ dnorm(0, 0.1)
B1 ~ dnorm(0, 0.1)
B2 ~ dnorm(0, 0.1)
B3 ~ dnorm(0, 0.1)
B4 ~ dnorm(0, 0.1)
B5 ~ dnorm(0, 0.1)
B6 ~ dnorm(0, 0.1)
tau ~ dgamma(0.1, 0.01)
s <- 1/sqrt(tau)
for(j in 1:N) {u[j] ~ dnorm(0, tau)
for(i in cumul_tracks[j]:(cumul_tracks[j+1]-1)) {
logit(mu[i]) <- B0 + (B1 � Spring[i]) + (B2 � Summer[i]) +
(B3 � Winter[i]) + (B4 � L[i]) + (B5 � Sex[i]) +
(B6 � MEI[i]) + u[j]
z[i] ~ dbern(mu[i])

}
}

}"

where the B terms are the parameters for each variable in the model. Because there were no

previous data to populate informed priors, the model is designed to include vague priors from

a normal distribution with a mean of 0 and a variance of 10 (JAGS uses precision which is 1/

variance in dnorm so a variance of 10 in JAGS is defined as 0.1). Tau is drawn from a gamma

distribution with a mean of 10 (mean = 0.1/0.01) and a variance of 1000 (variance = 0.1/
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(0.01)2) and used to define the model process error “s”, which is error that is not accounted for

by individual variation. Individual variability is assigned to “u” and allowed to vary for each

loop of “j”. Since the response variable is binomial, the model is set with a logit link function

and the response variable “z” is drawn from a Bernoulli distribution. We then run the model

using rjags (R package: rjags [49, 50]) and save the result to the object “model1.0”.
# Run JAGS model and specify initial parameter values
model1.0 <- jags.model(textConnection(model_string1.0),

n.chains = 4,
n.adapt = 100000,
data = list(Spring = Original$Spring,

Summer = Original$Summer,
Winter = Original$Winter,
L = Original$L,
Sex = Original$sex,
MEI = Original$MEI_Index,
z = Original$z,
N = N,
cumul_tracks = as.vector

(cumul_tracks)),
inits = function ()
{
list('B0' = runif(1, 0, 1),

'B1' = runif(1, 0, 1),
'B2' = runif(1, 0, 1),
'B3' = runif(1, 0, 1),
'B4' = runif(1, 0, 1),
'B5' = runif(1, 0, 1),
'B6' = runif(1, 0, 1))

},)
update(model1.0, 10000)

Within the rjags command we specify our model (as saved in the text file above), the num-

ber of parallel chains for the model with “n.chains”, the number of iterations for adaptation

with “n.adapt”, the data (as a list drawn from our data frame “Original” and the previously cre-

ated cumul_tracks object), and a list of initial starting values for each parameter, in this case a

single random value drawn from a uniform distribution between zero and one. The uniform

distribution is used here so that any value between zero and one is just as likely to be selected

as any other, unlike a normal distribution where values will typically come from near the

mean. The starting point is not particularly important as the chains will eventually converge to

a posterior distribution given sufficient steps. However, using starting points that are close to

the resulting posterior distribution would make the computation more efficient [51]. The

function “update” is then used to update the Markov chain associated with the model, with “n.

iter” set to 10,000 indicating the number of iterations of each Markov chain to run.

Posterior samples are then coerced into a single mcmc.list object (draws1.0) using “coda.

samples” [49]:
# Runs coda and identifies parameters to monitor
draws1.0 <- coda.samples(model = model1.0,

1n.iter = 500000,
1variable.names = c("B0", "B1", "B2",

"B3", "B4", "B5",
"B6", "s", "u"),

thin = 10)

where model1.0 specifies the JAGS model, 500,000 indicates the number of iterations to

monitor, “variable.names” indicates the variables of interest that we want to be tracked and
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reported on (in this case all of the B parameters, model process error (s), and individual vari-

ability (u)), and 10 is the thinning interval set so that only every 10th value out of all MCMC

iterations will be saved [51]. Results from coda.samples are stored in the “draws1.0” object.

An important step in our Bayesian model development is to test the assumption that our

priors are truly vague and not unintentionally influencing the model. To test this we specified

a priors-only (data-free) model “model_string0.0”:
# Priors-only model specification in JAGS syntax
model_string0.0 <- "model{

B0 ~ dnorm(0, 0.1)
B1 ~ dnorm(0, 0.1)
B2 ~ dnorm(0, 0.1)
B3 ~ dnorm(0, 0.1)
B4 ~ dnorm(0, 0.1)
B5 ~ dnorm(0, 0.1)
B6 ~ dnorm(0, 0.1)
tau ~ dgamma(0.1, 0.01)
s <- 1/sqrt(tau)
for(j in 1:N) {u[j] ~ dnorm(0, tau)
for(i in cumul_tracks[j]:(cumul_tracks[j+1]-1)) {
logit(mu[i]) <- B0 + (B1) + (B2) + (B3) + (B4) + (B5) + (B6)

+ u[j]
z[i] ~ dbern(mu[i])

}
}

}"

which we then run as before using rjags but with only the response variable “z” in the data

list. When plotted on the same scale as the posterior distribution of the data-full model, the

posterior of the priors-only model should be nearly undetectable if priors are truly vague. If

instead plots indicate that the priors-only posteriors are detectible, then the priors are still hav-

ing an impact on the model results and need to be expanded.

Models were also constructed to estimate parameters using maximum likelihood estimation

(MLE). Despite the philosophical differences between Bayesian and MLE approaches, with

vague priors, the parameter estimates from both approaches should be similar [52, 53]. We

implemented GLMMs with individual tag number as a random effect to account for the nested

nature of repeated sampling within individuals using:

1) glmer using the Laplace approximation in the R package lme4 [31]

glmer1.0 <- glmer(z ~ Spring + Summer + Winter + L + sex + MEI + (1|
ptt),

family = binomial(link = "logit"), data = Original)

and

2) Penalized quasi-likelihood PQL in the R package MASS [54]

glmm_pql <- glmmPQL(z ~ Spring + Summer + Winter + L + sex + MEI,
random = ~ 1|ptt, family = binomial, data = Original)

where z is the binomial response variable followed by each variable of interest. Both meth-

ods, glmer and glmmPQL have slightly different syntax for indicating random effects and the

family of the distribution but the concept remains the same. Penalized quasi-likelihood is the

simplest and most widely used GLMM method despite known issues of biased parameter esti-

mates if the standard deviations of the random effects are large, especially with binary data

[30–32]. Our use of PQL is meant as a comparison to perhaps more appropriate methods
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given the nature of our data, an important point of discussion given PQLs ubiquity in the liter-

ature. Glmer is a more suitable GLMM approach for the data used here.

Model performance with data paucity

Since one of the primary reasons that many previous telemetry studies lack population level

inferences is the absence of large datasets, we decided to test both the Bayesian and MLE

approaches on pared down subsets of the full dataset of 9440 locations. We randomly selected

25 replicates each of 75, 50, 25, and 10 percent of the full dataset (7080, 4720, 2360, 944 data

points respectively) resulting in 100 new, “data poor” datasets. Data subsetting was done with-

out concern for individuals, i.e. individuals were not selectively removed to make smaller data-

sets, instead points were randomly removed across the whole dataset. Each of these data poor

datasets were analyzed using the Bayesian and the two MLE approaches. Mean parameter esti-

mates from each level of data paucity were compared to the congruous parameter estimates

calculated using the full dataset to evaluate accuracy. The variance in parameter estimates for

each level of data paucity were also examined to test the precision of these models given the

smaller sample sizes from a larger population.

Test of model performance with simulated data

While the pared down datasets function as a useful example of model performance with real

world data, to truly test model performance, simulated data were created with known parame-

ter values and then run through the model to see if the parameter values could be recovered.

Code for creating a simulated dataset can be found in the Appendix. We created 10,000 unique

simulated datasets each with a comparable number of individuals (n = 34) and data points per

individual (~278) as the Mako dataset. Individual variation was accounted for by including an

error term in the simulation code which was comparable to the amount of individual variation

in the real Mako dataset. Testing a model by simulating data and then recovering the parame-

ter estimates used to create it is one of the best ways to test model performance, however a sim-

ulation test is not a necessary step in creating a movement model and hence its discussion here

is brief and only focused on model performance.

Spatial and temporal autocorrelation

We focus here on movement models that treat data points from an individual fish as indepen-

dent from one another. We recognize that in many cases spatial and temporal autocorrelation

can have a major impact on analyses and inferences from tagging studies [55–58]. Often,

where an animal is at time x effects where it will be at time x+1. Much time and effort have

been spent grappling with this issue and no single method for dealing with it has yet been

accepted in the scientific literature. We built a version of our Bayesian model that accounts for

this autocorrelation (S2 Appendix). After running the autocorrelated model, we compared the

results with the non-autocorrelated model described in this paper and found that the results

were comparable (S2 Appendix). Due to the increased simplicity of the non-autocorrelated

model, easier to interpret results, and reduced running time, we opted to focus on the simpler

model. We suggest that anyone interested in applying these models to telemetry data should

consider if the autocorrelated model is more appropriate for their dataset. If unsure, both

models should be run and the results compared.
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Results

Using the full set of Mako data, results from the Random Forest analysis indicated that our

OOB classification error rate was low, 8.76%, with misclassification of zeros (points east of

125˚W) slightly higher than misclassification of ones (confusion matrix class error 0.09 and

0.07, respectively). The Gini importance measure indicated that length was the most influential

model parameter, followed by the environmental indices, season, and sex. Moon phase, and

sea surface temperature were found to be non-significant classification variables (Fig 3). With

the ability of Random Forests to handle correlated variables we tested three different environ-

mental indices: NPGO (North Pacific Gyre Oscillation), MEI (Multivariate ENSO Index), and

PDO (Pacific Decadal Oscillation), simultaneously in order to determine which was best suited

to use as a predictor in our later modeling approaches. The multivariate ENSO Index was iden-

tified as the most influential index and subsequently run in a separate Random Forest without

the other two indices. Dropping the other indices had no effect on which parameters were

identified as important by the Gini index (Fig 4) giving us confidence in our selected model

parameters.

Fig 3. Gini index of relative parameter importance. Gini index of importance scores for all of the potential parameters in the initial permuted Random

Forest run (including three different environmental indices). Red indicates a parameter that significantly partitioned the data. Tested variables: Length, sea

surface temperature, Multivariate ENSO Index (MEI), North Pacific Gyre Oscillation (NPGO), and the Pacific Decadal Oscillation (PDO), moon phase,

season, and sex.

https://doi.org/10.1371/journal.pone.0188660.g003
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Results from the GAMM indicated that all tested parameters had one degree of freedom

and hence could be treated as linear, no higher order terms were needed (Table 1).

For our Bayesian approach a test of the influence of model priors was done by comparing

the full Bayesian data model with our priors-only model, where all beta parameter priors were

set with a mean of 0 and a variance of 10. The priors for B0, B4, and B5 appeared more infor-

mative then intended (Fig 5). To rectify this we designated broader distributions by increasing

the variance for the priors of these parameters.

Fig 4. Gini index of relative parameter importance. Gini index of importance scores for all of the potential parameters in the ultimate permuted Random

Forest run (including the single most influential environmental index, MEI). Red indicates a parameter that significantly partitioned the data.

https://doi.org/10.1371/journal.pone.0188660.g004

Table 1. Results from GAMM indicating degrees of freedom for each parameter identified as influen-

tial by random forest.

DF Chi.sq p-value

Spring 1 88.31 <0.05

Summer 1 176.21 <0.05

Winter 1 0.19 0.66

L 1 6.04 0.01

Sex 1 0.02 0.89

MEI_Index 1 112.70 <0.05

https://doi.org/10.1371/journal.pone.0188660.t001
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A rerunning of the priors-only model indicated that the expanded variance of B0, B4, and

B5 achieved the desired effect, alleviating concerns of unintentionally informative priors (Fig

6).

With revised vague priors the Bayesian model showed good indications of convergence,

with “grassy” trace plots indicating good mixing among chains (Fig 7A), normal distributions

for each parameter’s posterior (Fig 7B), and Gelman scores between 1 and 1.01 for all parame-

ters. Posteriors indicated that winter and fall were statistically similar (fall being the intercept

and winter having a posterior distribution which centered near zero with a mean of -0.034, CI

= -0.183, 0.115). Spring and summer both differed from fall with posterior 95% credibility

intervals which did not encompass zero (spring: mean = 0.756, CI = 0.598, 0.914; summer:

mean = -1.082, CI = -1.242, -0.924). Length also had a 95% credibility interval outside of zero

with a mean of 1.007, CI = 0.120, 2.026. The MEI index posterior also indicated a distribution

which did not encompass zero, with a mean of -0.538, CI = -0.638, -0.439. The effect of sex was

minimal with mean and 95% credibility interval centered on zero (mean = 0.086, CI = -1.812,

1.919) (Fig 7B).

Fig 5. Bayesian posterior distribution plots with identical priors. Bayesian posterior distributions for all of the parameters included in the model with

identical priors. All priors were defined as normal distributions with a mean of 0 and a variance of 10. Red indicates the model with both data and priors and

blue indicates the prior-only model.

https://doi.org/10.1371/journal.pone.0188660.g005
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With vague priors and the same parameters, results from the Bayesian and Maximum Like-

lihood approaches were comparable (Table 2). This remained true even as the models were

provided with reduced datasets. To avoid redundancy, we will focus on the results from only

the Bayesian models in our data paucity tests. As would be expected, the accuracy of mean

parameter estimates decreased as models were provided with less and less data. When com-

pared to estimates from the full dataset, minimum and maximum mean estimates across all

parameters expanded from -0.24 to 0.33 when given 75% of the data up to -0.88 to 1.39 when

given only 10% of the original data (Fig 8). Precision (as measured by 95% credibility interval

width) also decreased with data paucity, with the median credibility interval width for most

parameters expanding by ~0.56 when only 10% of the data were used compared to when all

the data were used. Despite these decreases in accuracy and precision, inferences (point esti-

mates) from the models did not change, although confidence in those inferences was reduced.

Results from the simulation analyses indicated that the Bayesian approach performed well

and was able to recapture the true parameter values used to create the 10,000 simulated data-

sets (Fig 9). Mean parameter estimates were nearly identical to the simulated values used to

create the data, confidence intervals were also similar to the full model’s 95% credibility

Fig 6. Bayesian posterior distribution plots with expanded, flat priors. Bayesian posterior distributions for all of the parameters included in the ultimate

model with vague priors. All priors were defined as normal distributions with a mean of 0 and a variance large enough to not influence the posterior distribution

for that parameter. Red indicates the model with both data and priors and blue indicates the prior-only model.

https://doi.org/10.1371/journal.pone.0188660.g006
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intervals indicating that estimates were reliably recovered across all simulated datasets. As with

the subset datasets, adding more individual variability to the simulated datasets increased the

widths of the confidence intervals but had little to no effect on the point estimates, again indi-

cating that inferences would remain stable but confidence in those inferences would decline.

Discussion

The interpretation of model results here is brief since as stated previously, the question investi-

gated in this analysis was not selected for its ecological relevance to Mako movement. Instead,

we will focus on discussing the models themselves, how they performed at different levels of

Fig 7. Trace plots and Bayesian posterior plots for the final model. Trace plots indicating good mixing of the four model chains (a) and posterior

distribution plots indicating parameter estimates produced by the model (b).

https://doi.org/10.1371/journal.pone.0188660.g007

Table 2. Parameter means and the random effect standard deviation from all three tested models, JAGs (Bayesian), glmer, and glmPQL.

model data_size B0.mean B1.mean B2.mean B3.mean B4.mean B5.mean B6.mean RandEff_SD

JAGS 9440 -1.07184 0.75605 -1.08214 -0.03431 1.007088 0.08584 -0.53784 2.655815

glmer 9440 -1.42083 0.755772 -1.08019 -0.03308 0.996651 0.118426 -0.53526 2.401489

glmPQL 9440 -1.33962 0.751796 -1.07625 -0.03297 0.920856 0.139784 -0.53176 2.234407

https://doi.org/10.1371/journal.pone.0188660.t002
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data paucity, and how to interpreting their results, rather than the specific conclusions related

to Mako movement.

Firstly, we note that the effect of expanding prior variance in our case was negligible, indi-

cating that with the tested sample size our data was overriding the influence of the priors even

before they were broadened. This has been seen in other Bayesian studies with even smaller

sample sizes [59]. Despite the limited effect of expanding our priors in this analysis, the exer-

cise of comparing the posteriors of the priors-only model to the full model is useful in gaining

a more complete understanding of one’s data and how specified priors may be affecting it.

The influence of covariates on horizontal movement can be interpreted by assessing the val-

ues of Bayesian estimates (mean, medians, modes, etc. of posterior distributions) and whether

the 95% credibility intervals include zero [60]. Covariates that did not include zero within the

credibility intervals were considered to significantly (with 95% probability) contribute to

movement east or west of 125˚W. Positive estimates were interpreted as covariates that are

positively related to movement west of 125˚W, while negative estimates are related to move-

ments east of 125˚W. Since our question was not ecologically relevant to Mako movement we

will not attempt to over-interpret our model results, however, as an example of how our results

Fig 8. Comparison of Bayesian parameter estimates given varying amount of data. Accuracies of parameter estimates with different amounts of data.

Accuracy was determined by subtracting the parameter value estimated using the full dataset from the estimate using reduced datasets. Columns are

arranged by parameter and rows indicate that size of the dataset used.

https://doi.org/10.1371/journal.pone.0188660.g008
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could be interpreted we will indicate how model results for something like length could be

interpreted. With a positively shifted posterior whose 95% CI does not include zero we could

indicate that animal length affected Mako movements, i.e. larger length values are positively

correlated with z values of 1, in other words, large Makos were more likely to travel west of

125˚W (Fig 7).

When subset datasets were analyzed with each model, credibility intervals expanded to dif-

ferent degrees around each variable. However, the point estimates themselves did not change,

variables with significant, positive estimates continued to have positive estimates as the dataset

was reduced. Similarly, those variables with negative estimates continued to be negative as the

dataset became increasingly sparse. This result suggests that researchers with data limited

telemetry datasets should attempt to quantitatively pursue population level inference. It is

important to note that the increased credibility interval with data limitations may cause a

Bayesian posterior to broaden enough to include zero. For this reason, it is important to con-

sider whether the amount of data is particularly sparse before determining that a predictor var-

iable is not significantly influencing a model. One of the strengths of the Bayesian approach is

Fig 9. Comparison of GLMM parameter estimates from different sized simulated datasets. Density plots for parameter estimates across 10,000

simulated datasets. Solid red lines indicate true parameter values used to create simulated data, solid blue lines represent the median estimate produced

across the 10,000 model runs. Dashed blue lines indicate the 95% credibility intervals for each parameter, for comparison dashed red lines indicate the 95%

credibility intervals for each parameter given the real Mako data.

https://doi.org/10.1371/journal.pone.0188660.g009
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how scarcity in data results in larger uncertainty in parameter estimates. A posterior distribu-

tion of the coefficient for a predictor variable may include zero because there were not enough

data to elucidate the strengths of the predictor. The entire uncertainty about this parameter,

given the data and model, is provided in the posterior distribution where one can compute the

exact probability of this coefficient being positive or negative.

As computing power and the accessibility of advanced statistical approaches via programs

like R increase, methods for analyzing complex telemetry datasets are rapidly expanding. Hier-

archical, mixed-effects, and state-space models, using Bayesian or maximum likelihood analyt-

ical approaches, are part of the developing toolbox available to ecologists [61, 62]. Each of

these approaches holds its own benefits and drawbacks but when used properly can allow

telemetry researchers to quantitatively address questions of animal movement at the popula-

tion level. Here we have presented results from hierarchical and mixed-effects models with

both Bayesian and MLE approaches and specifically examined effects of data paucity on popu-

lation-level inference. Our results indicate that given a properly framed question that takes

account of the scale of both the data and the predictor variables of interest, both the Bayesian

approach with vague priors and the MLE approach produce similar inferences, even as the

datasets were reduced in size. However, the Bayesian approach provides several advantages for

both current and future studies.

A major advantage to the Bayesian approach is that all results are exact; there are no asymp-

totic assumptions involved in the estimates as with MLEs, which may be of questionable value

in data-limited situations which are typical of ecological studies [48]. Additionally, Bayesian

credibility intervals have a more natural interpretation than classical confidence intervals. For

example, the inference from the 95% credible interval for the coefficient for Length is that the

true value of this parameter lies within (0.120, and 2.026), with probability 0.95, given the data

and the model. Within classical or frequentist statistics, such a statement is invalid because the

parameters are assumed to be fixed [63]. While not restricted to Bayesian analysis alone, we

think it is important to utilize a hierarchical structure (when warranted) no matter what

modeling approach is taken. As presented here, a hierarchical structure allows for a probabilis-

tic link from parameters at the individual level to parameters at the population level [64, 65].

This structure affords a population level understanding of particular behaviors by borrowing

strength across the individual datasets [64, 66, 67].

The use of priors can also be an advantage in Bayesian analysis. In the work presented here

we avoided the use of informative priors for two reasons: 1) to allow a more direct comparison

of results between Bayesian and MLE approaches, and 2) because in data-limited situations,

prior information may not be available and so it is important that vague priors still produce

credible results. This speaks to the use of priors in the current analysis. The ability to utilize

priors, however, can also be beneficial to future studies. For example, assuming an interesting

and valid question, posterior estimates from a recent study can easily be adapted into priors in

a future study. As is often the case with highly migratory pelagic species like the Mako example

discussed here, tracking studies are expensive and time consuming, and analyses are often con-

ducted on relatively small datasets which limits confidence in study inferences. It is unlikely,

however, that such a study will be the last ever conducted on that species, e.g. research on

Mako movement in the Pacific is likely to continue long into the future. With the ability of the

Bayesian approach to integrate prior knowledge into current analysis, it would be relatively

easy to take posterior distributions from one study and use them as prior distributions in a

future study. This would allow movement studies to obtain more precise parameter estimates

by leveraging information from the posterior distributions of previous investigations without

having to source all the previous studies raw data.
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The analysis of animal movements using telemetry data is filled with subjective choices,

from the filtering of location estimates and the selection of predictor variables, to the analytical

method itself. Careful thought must go in to each step and no one approach will be suited for

all datasets or all questions. Here we have presented a step by step approach to the analysis of

telemetry data with a binominal question, we have discussed results from MLE and Bayesian

approaches, and investigated the effect of data paucity on model inferences. We have indicated

the benefits of a Bayesian approach, especially in data-limited situations, and also acknowl-

edged the performance of MLE methods. With this framework, we hope to spur other

researchers to apply these kinds of population level quantitative approaches to their own data,

even in data-limited situations.
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